

Home Search Collections Journals About Contact us My IOPscience

A linear muffin-tin orbital calculation of the volume dependence of local electronic and magnetic properties of  $\gamma' - Fe_4N$ 

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys.: Condens. Matter 8 3829 (http://iopscience.iop.org/0953-8984/8/21/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.208 The article was downloaded on 13/05/2010 at 16:40

Please note that terms and conditions apply.

# A linear muffin-tin orbital calculation of the volume dependence of local electronic and magnetic properties of $\gamma'$ -Fe<sub>4</sub>N

Yong Kong, Rongjie Zhou and Fashen Li

Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China

Received 15 August 1995, in final form 21 November 1995

**Abstract.** The volume dependence of local electronic and magnetic properties of  $\gamma'$ -Fe<sub>4</sub>N has been investigated using the self-consistent spin-polarized linear muffin-tin orbital (LMTO) calculation. The results obtained indicate that the Fe magnetic moment at the face-centred sites (Fe<sup>11</sup>) decreases more rapidly than that at the corner sites (Fe<sup>1</sup>) with decreasing unit-cell volume. The decrease of Fermi-contact hyperfine field ( $H_{FC}$ ) at Fe sites with the decrease of the unit-cell volume not only results from the corresponding decrease of the Fe magnetic moment, but also is affected by the abnormal change of the transferred  $H_{FC}$  ( $H_{FC}^{t,val}$ ) at these sites. The discussion on  $H_{FC}^{t,val}$  at Fe sites partly reveals the unit-cell volume dependence of hyperfine interactions among atoms. Moreover the change of the calculated Mössbauer isomer shift (IS) at Fe sites with decreasing unit-cell volume is in agreement with the experimental results.

# 1. Introduction

Recently, there has been a great deal of interest in the study of the electronic structure and magnetic properties of iron nitrides (such as  $\gamma'$ -Fe<sub>4</sub>N [1–3]). Regarding the structure of  $\gamma'$ -Fe<sub>4</sub>N, the introduction of N to the fcc ( $\gamma$ )-Fe lattice leads to an ~30% increase (the experimental lattice parameter of  $\gamma'$ -Fe<sub>4</sub>N is 7.170 13 au) in volume and to two inequivalent Fe sites, i.e. the corner sites (Fe<sup>*I*</sup>) and the face-centred sites (Fe<sup>*I*</sup>). The Fe<sup>*I*</sup> sites each carry a large magnetic moment ( $\mu = 2.98\mu_B$ ) [4] with little interaction with N, while the Fe<sup>*I*</sup> sites with a small magnetic moment ( $\mu = 2.01\mu_B$ ) [4] bond strongly with N atoms. The Fe<sup>*I*</sup> atoms couple ferromagnetically with the Fe<sup>*I*</sup>.

In view of the large lattice expansion associated with the formation of  $\gamma'$ -Fe<sub>4</sub>N, and the very different bonding of Fe<sup>1</sup> and Fe<sup>11</sup> sites, it is particularly interesting to investigate their electronic and magnetic properties as a function of volume (or pressure). Recently Li *et al* [5] and Yang *et al* [6] have investigated the local electronic and magnetic properties of  $\gamma'$ -Fe<sub>4</sub>N using the high-pressure Mössbauer effect (ME) technique at 300 K and 4.2 K, respectively. Lord *et al* [2] have measured the volume dependence of the magnetization and NMR of  $\gamma'$ -Fe<sub>4</sub>N. Theoretically, there are many contributions to the volume dependence of local properties in  $\gamma'$ -Fe<sub>4</sub>N; for example, Sakuma [7] has already discussed the influence of the volume expansion on the magnetic moment, and Paduani and Krause [1] have also calculated the lattice spacing dependence of the magnetic hyperfine field ( $H_{hf}$ ), the isomer shift (IS) and the magnetic moment using the DVM method. It is found that the volume dependences of the magnetic moments and the hyperfine fields at Fe<sup>1</sup> and/or Fe<sup>11</sup> sites are different, but the reasons for this are not quite clear.

0953-8984/96/213829+06\$19.50 © 1996 IOP Publishing Ltd

3829

For the above purposes, in the present paper we have calculated the volume dependences of local electronic and magnetic properties in  $\gamma'$ -Fe<sub>4</sub>N using the self-consistent LMTO method, and discussed the changes of the interactions between atoms with decreasing unit-cell volume.

#### 2. The method of calculation

The LMTO method [8,9] has been employed to perform a semi-relativistic spin-polarized band calculation for the  $\gamma'$ -Fe<sub>4</sub>N system for various unit-cell volumes. The exchange–correlation term was taken as the form deduced by von Barth and Hedin [10]. The Brillouin zone integration was carried out for 286 *k*-points in the irreducible zone. We have employed the orbitals up to l = 2 for 3d and 4s electrons of Fe atoms, and s, p orbitals for 2s, 2p electrons of N atoms. The convergence is assumed to have been achieved when the root mean square error of the self-consistent potential is better than 1 mRyd.

In the atomic-sphere approximation (ASA) the atomic radius assigned to the atomic sites should be chosen so as to satisfy

$$V = \frac{4\pi}{3} \sum_{i} Q_i S_i^3$$

where V is the volume of a primitive cell and  $S_i$  is the atomic radius of the equivalent  $Q_i$  atoms in the cell. For Fe<sub>4</sub>N, therefore, the values of  $S_{Fe^I}$ ,  $S_{Fe^{II}}$  and  $S_N$  must be chosen. We have taken  $S_{Fe^I} = S_{Fe^{II}} = S_{Fe}$ , and in addition  $p = S_N/S_{Fe} = 0.62$ . So the values of  $S_{Fe}$  and  $S_N$  are automatically defined by the above equation in accordance with the cell volume.

We have chosen ten points for calculation so that the volume decrease between adjacent points is 10% of the volume expansion  $\Delta V$  on going from  $\gamma$ -Fe to  $\gamma'$ -Fe<sub>4</sub>N. The Fermi-contact magnetic hyperfine fields ( $H_{FC}$ ) and Mössbauer isomer shifts (IS) have been calculated according to the prescription given by Akai *et al* [11].

# 3. Results and discussion

The average Fe magnetic moment and the local magnetic moments at Fe sites in  $\gamma'$ -Fe<sub>4</sub>N are shown as functions of unit-cell volume in figure 1(*a*). With the unit-cell compression, the 3d subbands for Fe are broadened and the 3d exchange splitting reduced, and thus there is a great decrease of the average Fe magnetic moment. Moreover, the Fe–N interactions [12], which reduce the magnetic moment at Fe<sup>*II*</sup> sites but raise the magnetic moment at Fe<sup>*I*</sup> sites, are greatly increased with the decrease of unit-cell volume. Therefore the magnetic moment at an Fe<sup>*II*</sup> site decreases more rapidly than that at an Fe<sup>*I*</sup> site, i.e. the magnetic moment at an Fe<sup>*I*</sup> site is more stable against the compression of the lattice. In spite of the non-linear dependence of the magnetic moment at Fe sites on the unit-cell volume, we have used the formula

$$\ln \mu(V) = A + B \ln V$$

to fit the magnetic moment at Fe sites. The fitting results show that  $\partial \ln \mu_{Fe^{I}}/\partial \ln V = 0.34$  for Fe<sup>I</sup> sites and  $\partial \ln \mu_{Fe^{II}}/\partial \ln V = 4.26$  for Fe<sup>II</sup> sites. For the average Fe magnetic moment, we have also obtained  $\partial \ln \overline{\mu}/\partial \ln V = 2.00$ .

With the decrease of unit-cell volume,  $H_{FC}$  at Fe sites decreases rapidly. We have illustrated the logarithmic  $H_{FC}$  at Fe sites in figure 1(b) as a function of unit-cell volume, and the logarithmic volume derivative  $\partial \ln |H_{FC}|/\partial \ln V$  of the magnitude of the average



**Figure 1.** (*a*) The magnetic moments at Fe sites and average magnetic moments in  $\gamma'$ -Fe<sub>4</sub>N as functions of unit-cell volume. (*b*) The volume dependences of the  $H_{FC}$  at Fe sites and the average  $H_{FC}$  in  $\gamma'$ -Fe<sub>4</sub>N.

 $H_{FC}$  at Fe sites is found to be  $\partial \ln |\overline{H_{FC}}|/\partial \ln V = 2.54$ . For Fe<sup>I</sup> and Fe<sup>II</sup> sites,  $\partial \ln |H_{Fe^I}|/\partial \ln V = 2.26$  and  $\partial \ln |H_{Fe^{II}}|/\partial \ln V = 2.68$  are obtained respectively. In contrast to the changes of magnetic moments at Fe<sup>I</sup> and Fe<sup>II</sup> sites with decreasing unit-cell volume, it has been noted that the values of  $\partial \ln |H_{FC}|/\partial \ln V$  are almost the same for Fe<sup>I</sup> and Fe<sup>II</sup> sites.

In order to understand the discrepancy between the changes of magnetic moment and  $H_{FC}$  at Fe sites, we decompose  $H_{FC}$  into  $H_{FC}^{core}$  and  $H_{FC}^{val}$ , which are the contributions of core and valence electrons, respectively.  $H_{FC}^{core}$  comes from the polarization of the core due to the polarized d electrons and is proportional to the local magnetic moment  $\mu_l$  of the atom, while  $H_{FC}^{val}$  mainly comes from the contribution of the transferred magnetic hyperfine field  $(H_{FC}^{t,val})$ , which is induced by the sd hybridization between s orbitals of the atom and the spin-polarized d orbitals of the neighbouring atom, and is proportional to the average magnetic moment of atoms, i.e. [11, 13]

$$H_{FC} = H_{FC}^{core} + H_{FC}^{val} = A\mu_l + B\overline{\mu}.$$

The volume dependences of  $H_{FC}^{core}$  and  $H_{FC}^{val}$  at Fe sites are given in figure 2(*a*). It is shown that  $H_{FC}^{core}$  at Fe sites is the main contribution to  $H_{FC}$  and its volume dependence is similar to that of the magnetic moments shown in figure 1(*a*)—in contrast to the case



**Figure 2.**  $H_{FC}^{core}$  and  $H_{FC}^{val}$  at Fe sites in  $\gamma'$ -Fe<sub>4</sub>N for various unit-cell volumes. (*a*) The volume dependences of  $H_{FC}^{core}$  and  $H_{FC}^{val}$ . (*b*) The local magnetic moment dependence of  $H_{FC}^{core}$  and the average magnetic moment dependence of  $H_{FC}^{val}$ .

for  $H_{FC}^{val}$  at Fe sites. The local magnetic moment dependence of the  $H_{FC}^{core}$  at Fe sites in  $\gamma'$ -Fe<sub>4</sub>N is shown in figure 2(*b*). Obviously a linear relation between the  $H_{FC}^{core}$  and the local magnetic moment at Fe sites is observed and the proportionality coefficient is evaluated to be about  $-12.7 \text{ T}/\mu_B$ , i.e.

$$H_{EC}^{core} = -12.7\mu_l \tag{T}$$

which is larger than that of Fe-based alloys [11, 14].

The change of  $H_{FC}^{t,val}$  (approximately  $H_{FC}^{val}$ ) at Fe sites with the unit-cell volume is quite different from that of  $H_{FC}^{core}$ . At Fe<sup>11</sup> sites  $H_{FC}^{t,val}$  is a small negative contribution to  $H_{FC}$  and changes little with decreasing unit-cell volume, while at Fe<sup>1</sup> sites  $H_{FC}^{t,val}$  increases greatly with the decrease of unit-cell volume and changes into a remarkable positive contribution to  $H_{FC}$ . As is indicated by the results of Mohn *et al* [15],  $H_{FC}^{t,val}$  at Fe<sup>1</sup> sites plays an important role in the volume dependence of  $H_{FC}$  at Fe<sup>1</sup> sites and thereby produces the discrepancy between the changes of magnetic moment and  $H_{FC}$  at Fe sites with unit-cell volume.

As mentioned above,  $H_{FC}^{t,val}$  at Fe sites is proportional to the average magnetic moment  $\overline{\mu}$  in the unit cell and reveals the influence of the Fe neighbours on  $H_{FC}$  at Fe sites via the

hyperfine coupling coefficient *B*. The  $H_{FC}^{t,val}$  at Fe sites in  $\gamma'$ -Fe<sub>4</sub>N with various unit-cell volumes are also shown in figure 2(*b*) as functions of the average Fe magnetic moment. The non-linear variation of  $H_{FC}^{t,val}$  at Fe sites with  $\overline{\mu}$  indicates the change of the coefficient *B* with unit-cell volume and reveals the variation of the interactions between Fe and its neighbours. Fitting the changes of *B* at Fe<sup>1</sup> and Fe<sup>11</sup> sites with unit-cell volume, we have obtained  $\partial B_{Fe^{I}}/\partial \ln V = -44.2 \text{ T}/\mu_B$  and  $\partial B_{Fe^{II}}/\partial \ln V = 12.5 \text{ T}/\mu_B$ . Indeed the opposite sign of  $\partial B/\partial \ln V$  at Fe<sup>1</sup> and Fe<sup>11</sup> sites indicates that the variation of interactions between Fe<sup>1</sup> and neighbours.

Finally we discuss the volume dependence of IS at Fe sites. The calculated results relative to that for  $\alpha$ -Fe are given in figure 3; the calibration constant is taken as  $\alpha = -0.24a_0^3 \text{ mm s}^{-1}$ . With decreasing unit-cell volume, the combined effect of the volume compression of 4s electrons and the enhancement of Fe<sup>*I*</sup>-Fe<sup>*II*</sup> and Fe–N sd hybridizations increases the density of charge  $\rho(0)$  at the Fe nucleus and therefore decreases IS rapidly at Fe sites. Fitting the variation of IS, we obtained  $\partial \overline{\text{IS}}/\partial \ln V = 1.73 \text{ mm s}^{-1}$  which agrees well with the experimental results at 300 K [5]. Moreover, we have obtained  $\partial \overline{\text{IS}}_{Fe^{I}}/\partial \ln V = 1.59 \text{ mm s}^{-1} < \partial \overline{\text{IS}}_{Fe^{II}}/\partial \ln V = 1.76 \text{ mm s}^{-1}$ .



Figure 3. The volume dependence of IS at Fe sites and the average IS.

### 4. Conclusion

The spin-polarized linear muffin-tin orbitals (LMTO) method has been used to perform calculations for  $\gamma'$ -Fe<sub>4</sub>N with various unit-cell volumes. The volume dependences of the local electronic and magnetic properties at Fe sites have been discussed.

It has been found that the Fe magnetic moments at Fe<sup>*I*</sup> sites are more stable against the unit-cell compression than those at Fe<sup>*I*</sup> sites. The decrease of  $H_{FC}$  at Fe sites with the decrease of unit-cell volume resulted from the combined effect of the corresponding decrease of the Fe magnetic moment and the change of  $H_{FC}^{t,val}$  at Fe sites. Furthermore with decreasing unit-cell volume, the opposite signs of  $\partial B/\partial \ln V$  at Fe<sup>*I*</sup> and Fe<sup>*I*</sup> sites indicate that the variation of interactions between Fe<sup>*I*</sup> and its neighbours is different from that between Fe<sup>*II*</sup> and its neighbours. The change of IS at Fe sites with decreasing unit-cell volume is in agreement with the experimental results at 300 K.

#### Acknowledgments

The project was supported by the National Natural Science Foundation of China and the Doctoral Research Fund of the National Education Committee of China.

#### References

- [1] Paduani C and Krause J C 1994 J. Magn. Magn. Mater. 138 109
- [2] Lord J S, Armitage J G M, Riedi P C, Matar S and Demazeau G 1994 J. Phys.: Condens. Matter 6 1779
- [3] Chen S K, Jin S, Tiefel T H, Hsieh Y F, Gyorgy E M and Johnson D W 1991 J. Appl. Phys. 70 6247
- [4] Frazer B C 1958 Phys. Rev. 112 751
- [5] Li F S, Kong Y and Zhou R J 1994 J. Phys.: Condens. Matter 7 L238; 1996 Solid State Commun. at press
- [6] Yang C L, Abd-Elmeguid M M, Micklitz H, Michels G, Kong Y and Li F S 1996 J. Magn. Magn. Mater. at
- press [7] Sakuma A 1991 J. Magn. Magn. Mater. **102** 127
- [8] Anderson O K 1975 *Phys. Rev.* B **12** 3050
- [9] Skriver H L 1984 The LMTO Method ed M Cardona, P Fulde and H J Queisser (Berlin: Springer)
- [10] von Barth U and Hedin L 1972 J. Phys. C: Solid State Phys. 5 1629
- [11] Akai H, Akai M, Blügel S, Drittler B, Ebert H, Terakura, Zeller R and Dederichs P H 1990 Prog. Theor. Phys. Suppl. 101 11
- [12] Kuhnen C A, de Fiqueiredo R S, Drago V and da Silva E Z 1992 J. Magn. Magn. Mater. 111 95
- [13] Stadnik Z M and Stronik G 1989 Hyperfine Interact. 47 275
- [14] Coehoorn R, Denissen C J M and Eppenga R 1991 J. Appl. Phys. 69 6222
- [15] Mohn P, Schwarz K, Matar S and Demazeau G 1992 Phys. Rev. B 45 4000